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ABSTRACT 

The loss in radar resolution, that is,the increase in mainlobe 
width and sidelobe level, has been computed for signals corrupted by 
a stationary random phase process.  By making approximations 
appropriate to a coherent radar, an easily interpreted analysis is 
possible.  The application to a CW radar or a pulsed radar using a 
reference oscillator with broadband phase errors is straightforward 
and indicates that a hash sidelobe level is introduced. A more general, 
application, which corresponds to a crystal oscillator reference 
with narrowband phase errors requires the calculation of a convolution. 
Hash sidelobes are introduced in this case also, except that their 
level is a simple function of the ratio of the phase error and signal 
bandwidth. 
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SECTION I 

INTRODUCTION TO SYSTEM COHERENCE 

A radar system using frequency measurements to estimate target 

velocity is in Foroe sense coherent. That is, phase as a function of 

time if used to provide resolution in the frequency domain.  Ihe 

phase information is used to increase the energy in some frequency 

band while attenuating it in some other band. The resolution can be 

measured by the width of the main lobe region (main lobe width) and 

the level of the cleared region (sidelobes).  If the phase information 

has deviations from the proper structure, the system performance in 

terms of main lobe width and sidelobe level will be degraded. 

Phase information can also be used to give angular or range reso- 

lution.  Angular resolution is achieved by measuring phase information 

as a function of distance along an array, while range resolution is 

achieved by measuring phase information as a function of frequency. 

The mathematics of each of these problems is the same.  Therefore 

the application of the analysis presented in this paper applies to 

range and angular resolution problems as well as doppler resolution. 

Consequently, much of the work done on phase error effects has appeared 

in the literature on antennas. 

The phase errors may be deterministic or random.  Deterministic 

phase errors can often be modeled by a few terms of a power series 

or a few terms of a Fourier series (periodic or quadratic,   etc.). 

For these cases, the degradation can be described analytically or 
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calculated in a straightforward manner on a digital computer. 

Random phase errors may have varying statistics (non-stationary) 

cr constant statistics (stationary)., An example of a non-stationary 

random phase process is random frequency modulation.  Even if the 

frequency random process is stationary, the phase process is not. 

Stationary random processes are easier to describe. They model many 

phenomena including oscillator short-term instability, additive noise, 

propagation media inhomogeneities or variations, random target motion, 

and antenna distortion or vibration  A bibliography of relevant 

papers is compiled at the end of this report.  Oscillator instability 

[2] 
and its effects has received the most attention 

[3] 
This paper is an extension of the paper by Raven   in that issue 

of the Proceedings in which he develops a quantitative description of 

the effects of stationary phase errors. The analysis is applied to 

oscillator incoherence (phase errors vs time) and its effects on 

doppler resolution and sidelcbes,  Raven's work is extended to include 

the effects of short pulse length (a common radar situation;.  These 

results are applied to state-of-the-art equipment (.good oscillator 

stability and low expected sidelobe level).  This makes it easy to 

interpret the results and gain insight into the distortion mechanisms 

and to determine state-of-the-art radar capability. 

Two outstanding papers on the effects of random phase errors 

r4'i 
have appeared in the literature on antenna design. A thesis by Ruze- -I 

presents an analysis for computing the variance of the sidelobes for 



a discrete array or for a continuous array where the correlation 

interval is small relative to the array length. This rigorous analy- 

sis is valid for a stationary gaussian random phase process with no 

restriction on the variance, of the phase errors. A paper by Develet- J 

emphasizes the loss in resolution as a result of random phase errors. 

-akl2 
A gaussian correlation function is assumed (R(T) «S e      ) but. nc 

restriction is placed on the correlation interval or the phase pro- 

cess variance.  Graphs of the RMS antenna pattern are provided for 

a wide range of correlation intervals and RMS phase errors. These 

graphs also indicate the loss in sidelobe level. 

The analysis in both these papers is rigorous but, therefore, 

very complicated.  By treating only phase processes with a small RMS 

level, it is possible to determine the loss in main lobe width and 

sidelobe level for an arbitrary correlation function. This approach 

which is taken in this paper, offers more insight into the degradation 

mechanisms. 

CONCLUSIONS 

The results of the analysis are 

(1)  The spectrum of the transmit signal -/-(f)  is given 

,/T(f) = ko(f) + <^(f)]<£)s^(f) (i) 

Note on Notation: 

Lower case s is a voltage vs time s(t) 

Upper case S is a voltage vs frequency, S(f)  is a signal spectrum 

Script y$  is [voltage] vs frequency, vfCf), is a power spectrum 
Upper case R is [voltage] vs time delay, R(T), is a correlation 
function , .     .,. 

The subscript I refers to an ideal uncorrupted signal s (t), SAt) 



where Sj(f)  is the frequency characteristic of the uncorrupted 

signal,     cA^)  ^s fc^e Power spectral density of the stationary 

phase process and where the symbol ®   denotes a convolution. 

(2)  The spectrum of the coherently demodulated received 

signal differs from the transmit signal only in one aspect.  Trie 

phase process becomes a phase difference process  [A0(t)] with spectral 

density 

JA?j(f) = 2 J0(f) [1 - cos 2nfTd] (2) 

where X,  is the round trip propagation delay.  Therefore 

v£R(f) = [|i0(f) + 2 J0(f) [1 - cos 2nfTd] n<8>jSI(f) f2 

The applications of the analysis to practical radar situations 

are: 

(A) If a microwave oscillator is used as the coherent reference 

in a pulsed radar, then the spectrum of the phase process  (Q)  is 

wider than the signal spectrum  (fi > —).  If the delay time is greater 

than the pulse length, [T, > T], the spectrum of the received signal 

is 

*8R(f) = |SICf) |2 + 4 J?0(f): (3) 

Thus the phase process can be interpreted as additive noise for this 

case and produces hash sidelobes. 

(B) In a CW the signal bandwidth can be very narrow because of 

the long integration times.  In this case the spectrum of the phase 

Note:  Throughout the paper an impulse of unit area at  (f = 0) 
is denoted |a (f) . 
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process is wider than the signal spectrum (fi > —)  and the delay 

time is less than the pulse length  (T, < T) therefore the spectrum 

of the received signal is 

JR(f) = !sx(f) |2 + 4^0(f) [1 - cos 2nfTd]       (u) 

(C) If an IF crystal oscillator is used as the coherent 

reference in a pulsed radar, the spectrum of the phase process is 

narrower than the spectrum of the signal (fi < —)  and the delay is 

greater than a pulse length (T, >T).  In this case the convolution 

in equation 1 must be evaluated. The results calculated numerically 

are a function of the spectrum of the phase process and side lobe 

weighting. For fi T < .1 there is almost no loss in resolution or 

achievable sidelobe level. For Q T > 10 the results reduce to _ase 

A. For  .1 < fi T < 10 there is a loss in resolution where the side 

lobe level is a linear function of Jfi T. 

The fourth relationship of delay, pulse length and phase band 

width  (I, < T  fi < —)  corresponds to a CW radar but is net likely 
d 1 

to occur in practice because very narrow filters to limit the pbasr 

error bandwidth are not easily realized. 

In all cases it is assumed that the RMS phase error is less rb-in 

one radian. This assumption, which is valid for state-of rht a-r 

coherent radars, makes the distortion sidelobes a linear function of 

the RMS phase error. 



SECTION II 

CALCULATION OF TRANSMIT SIGNAL SPECTRUM 

Consider a pulsed transmit signal of the form 

sT(t) =Vf e *ot*J0<t) [rect(f)] (5) 

T       T 
,t, C1     for--<t<I 

where        rect I— = j 
vO     otherwise 

The relationship of the various signals is shown in Figure 1.  Let 

0(t)  be a zero-mean stationary random process specified by the 

+ 
following correlation function and spectral density. 

E J0(t)2] = R (0) < 1 radian2 (6) 

R0(T) = E 0(t) q>-   (t - T) - r *<«.+j2n£T« '* 

The signal  s (t)  is a random process because it is a function 

of a random process.  The pulsed nature of  s (t)  however makes it 

a nonstationary random process and, therefore, in a strict sense its power 

spectral density is not defined, 

t In the numerical examples given in a later section, the approxima- 
tion of small RMS phase error is shown to be valid for available 
equipment. 



•r 

This difficulty is overcome by defining another random process 

S'f) which is linearly related to the first by a Fourier transform 
1 + » 

ST(f) =  ' sT(t) e "j2TTftdt (7) 

The expected value of S (f)  is zero, although its variance is not. 

The produce, of &f and the variance of S_(f) 

[Af] E [ |ST(f)|
2] 

is, interpreted as the energy which would appear at the output of a 

narrow filter centered on f  and Af wide. Thus, the variance is 

interpreted as the power spectral density of s-(t'). The power spectral 
T 

density is therefore defined 

JT(£)  = E[|ST(f)|
2] 

= E r JV )   s*(a)   e^2TTft  e +^2TTfadt, •i (8^ 

+ 00       +   00 

JT(f) - Rs(t, a) e -J2TTf(t"a>dtda <9) 

where R (r , a) = E[s(t) s*(a)] 
u T   T 

A. more rigorous analysis giving the same results is given in the 
Appendix. 



The resolution and sidelobe level of the signal, s (t) are determine' 

from the square root of the power spectral density *jL(f). 

A. more general interpretation of 'O   (t)     can be made if rht 

transmit signal has a rectangular time envelope. For this class of 

signal, the function «T(f)  is interpreted as the variance of the 

voltage at the output of a filter matched to s (t). This i-nterpre 

ration which is proved in the Appendix is valid even if the received 

signal is weighted (e.g., Taylor sidelobe weighting).  If  &,.<.'••) is 

an arbitrary time limited signal  a more complicated expression for 

J 
filter. 

(f)  is defined which is interpreted as the output of a matrhed 

The expression for A-(f)  is evaluated by substituting the 

definition of  s(t.)  into R~(t, cO • 

R (t, a) = £ 
•9 

j0( f>    ft)    -j0(a) 
e1       •   rect b| e 

(T)J T rect »  ' £ .10) 

where the transmit center frequency, uu  . is assumed to be zero to 

normalize the calculation.  This normalization is valid because com- 

plex notation has been used in the analysis.  If the variance of the 

phase is small, it may be expanded in a few terms of a power series 

and an approximate expression for the correlation function may be 

found by keeping terms of second order: 
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{(t, a) =   E T[i + j0(t) - Mjp-Jfi - j0(a) - ^ai_] 

rect (*)  rect  (&]. f 

Bs(t, a) *   - [l - R0(O) + y t-a)]   rect (J)    rect (f) 

(11) 

(12) 

Equation 9 becomes 

iT-> - 
+ 1/2 X/2 

| [l-R^OH R (t- a)] e-jcCTTf(t"a)dtda  (13) 

-T/2 -T/2 

The integral in Equation 13 is more easily solved by rotation of 

coordinates. Define, therefore, 

T = t - a 

U = t + a 

The rectfunction serves to limit the range of the integration; there- 

fore, by suitably defining the limits of the integral: the multipli- 

cation by rect ("z Jean be implicitly stated. This gives 

v3Tu) - i 

+T    +T-T 

dr  f dU [1 - R.(0) + R^(T)]e"j2TTfT 

-T    -T+T 
-H 

JT(f)  =    j 4[1  - B.0(O)  + R0(T)]   [l  - Ml   e"j2TTfT dr (IA) 



Recognizing a multiplication in the  T domain as a convolution 

in the  f domain and taking the transform of R (T)  the spectrum 

can be written by inspection* as 

y?T(f) = 2T[1-R0(O)] 

+ 2lX.(f)® 
0 

sin TTfT 
nfT 

sin nfT 
TTfT 

(15) 

If S (f)  is the transform of the ideal signal  s (t)  (i.e., no 

2 
phase corruption) and RJ(0)  is much less than 1 radian , Equation 15 

can be written in the more general form 

iT(f)=[^(f) + J(f)]® |sx(f) (16) 

This general equation is proven in the Appendix for the case where 

s (t.)  is an uncoded sinusoidal pulse with a rectangular envelope. 

s in x 
*The transform of a rect is   , the transform of a triangle 

(rect ® rect)  is 

sin x 
x 

10 



SECTION III 

EFFECT OF FINITE DELAY 

Before any processing of the return signal, the RF output of the 

antenna is mixed down to an IF frequency (see Figure 1).  The IF fre- 

quency is usually such a small percentage of the RF frequency ( 'v 1%) 

that the IF frequency may be assumed to be zero without affecting the 

following calculations.  In a coherent system,, the local oscillator 

(L.On) used to mix down is referenced in phase to the transmitted 

signals.  Therefore, if the propagation delay is short enough, any 

phase errors on the received signal should be cancelled by the L.O. 

It is found that the finite range delay  [T ]  changes the phase process 

($(t)]  to a phase difference process  [A<Kt)j with the modulated 

power spectral density given by: 

J h.   (f) = 2  (f) [1 - cos 2-TfT,]        (17) 

This assertion is shown below.  The received signal, after mixing down 

tc IF, is 

I t - T 
•(t) * rect | „ 

j(u)o+a)d)(t-Td) + j«Kt-Td)   ->ot - j<Kt)  n 8> 

-j*0    j"dt    jA*(t) 
r(t) = e     e       e rect 

where       A<f>(t) - <j>(t - T ) - <|>(t) 

C-Td (19> 

11 
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<J> • (o>, +ui )T, 
o    a  o d 

The phase <J>  is not of interest and is ignored.  Set the doppler 

frequency  u,  and the center frequency 01  to zero for convenience. 

This is permissable because of the complex notation used throughcut 

the paper- 

The phase difference process is a stationary random process because 

it is a linear combination of stationary random processes.  Thus, the 

problem reduces to the problem solved in the last section where new the 

phase difference spectral density   ,^(f)  is substituted for   (r"> 

in Equation 16 , 

The spectral density of  A<Kt)  is found as follows: 

A«(f) = i W°  e_J2lTfT d'       (20) 

where 

R (-) - E [A«j>(t) • a*(t - •)] 
A<p 

Substituting the definition of  A<J>(t)  into the above equation tcr the 

correlaticn function gives 

R     (-)   =   [<t(t)   -  <}>(t  -  T  )][<(.*(t  -   r)   -   Mt  -   -- T )1 
A cp a a 

(21) 

R..(0   =  2  R  (r)   -  R  (T   + T.)   - R.(;   -  T  ) 
A<t> <j> d> a $ a 

13 



Using the Fourier theorem relating delays in one domain to linear phase 

in the other domain the spectral density is found: [R,(T + TJ trans- 

forms to  ^(f) e:j27TfTd ] 

H(f)   - 2 ^(f) [1 - cos 2fffTd)        (22) 

Therefore, the received power spectrum is a modified version of 

Equation 16, namely 

2 2 
?R(f) = | Sx(f) t  + 2[     (f)(l - cos 27TfTd)] X |Sx(f)|      (23) 

14 



SECTION IV 

APPLICATIONS AND NUMERICAL EXAMPLES 

Applying the previous analysis to practical radar problems 

involves interpreting the expression for the received power spectral 

density given in Equation 23, 

j/RCO = ISjCf)!2 + 2  i(f)[l - cos 2TTfXd] <8> ISjCf)!2      ilU) 

The spectral density is made up of two additive terms., the first is 

the power spectrum of the ideal signal  |s (f)|  , and the second is 

an error term involving the random phase spectrum.  Because the second 

term has a convolution, it is not always easy to determine the effects 

of the phase errors by inspection.  Fortunately, there are some limit- 

ing cases which correspond to practical radar situations for which the 

convolution is trivial. These cases are.  (A)  the bandwidth of the 

signal is narrow relative to «L(f)  but broad relative to cos(2rrfT,) 

or  (B)  the signal is very long in time so that S (f)  appears as 

an impulse relative to o .(f)[l - cos 2rrfT ] . A thicd case (C) is 

non-trivial and requires a numerical evaluation of the convolution, 

because the bandwidth of ST(f) and ^(f) may be approximately the 

same. 

CASE A PULSED RADAR - MICROWAVE OSCILLATOR 

Consider an X band pulsed radar with the rectangular, pulse being 

generated by a microwave oscillator. Even a high Q  cavity (say 

15 



Q = 10 )  will have a phase error bandwidth  (0)  of about 100 KHz. 

Assume that the pulse length  (T)  is about one millisecond and the 

propagation delay (T\)  is 5 milliseconds. Therefore, the following 

approximations are valid 

1 

T < T, 

The  power  spectral density of  the   received  signal   is  given by 

jR(f)   =  2T 
sin rrfT 12 

TTfT 
+ 4T J0(f)   [1  -   cos  2HfTd]0J^^r (2 5) 

sin x 
function looks like an impulse For the assumptions made the 

(of area —) relative to the wide character of vdL(f)  but is much 

wider than the period of the cos 2TTfT,  modulation.  Therefore, the 

cosine term tends to average out.  If T, > 5T  there are at least 

five cycles of the periodic function to be averaged and the approxi- 

mation is good (see Figure 2).  Thus, the receive power spectrum 

plotted in Figure 2, is given by: 

2 

JR(f) = 2T 
sin TTfT 

TTfT *&(f) (26) 

Let 

V« f < 0 

16 



JA* (f) 
2<$4> <f )  * ENVELOPE 

\r\ nrtft ft Aft 
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05 
00 
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CM 

I 
QD 

Y < < £1 
T    < < Td 

DOPPLER   RESOLUTION 

Figure   2.     SPECTRUM   OF   RECEIVED  SIGNAL   CASE  A-WIDE BAND  PHASE 



2 
then the RMS phase error is 0 - R,(0) = N fi .  The signal-to-noise 

ratio (due to transmit phase errors only) is, therefore, 

^]2 
= 

(peak signa i)2 

N) mean £ square noise 

= 
2T m 

2N 
0 ~2 

(2 7) 

If T = 1 millisecond, Q =  100 Kc, andr\J 0       = .1 radian, the hash 

sidelobe levellwhich is the signal-to-noise ratio inverted 1 is 

RMS Sidelobe « -40 db M [|1 (28) 

The RMS sidelobe level (near the main lobe region) is proportional cc 

I "21 the RMS phase error 10 I  and inversely proportional to the square 

root of   nr. 

CASE B CW RADAR 

In a CW radar, the integration time (effective pulse length) is 

usually long relative to the propagation delay (T > T,)- For the 

same reason the signal bandwidth is narrow relative to the phase 

process bandwidth regardless of the type of oscillator used. Even 

the best crystal oscillators have a phase error bandwidth of about 

100 Hz. Thus, if the integration time is of the order of seconds , 

the following approximation is valid. 

-I 
L8 



/  •     I2 
i s in x1 

Referring to Equation 24 the      function looks like an impulse 

(of area 1/T) relative to the wide character of *L(f).  It also 

looks like an impulse relative to the (1 - cos 2rrfT,) modulation, 

(see Figure 3). The cosine term does not average out. The spectrum 

of the receive signal, plotted in Figure 3, is given by 

0(f) = 2T1 SinTTfT 
'RN '      I   TTfT 

2 
+ 4X(f) (1 - cos 2TTfTd) >2C. 

This case corresponds to the calculation made by Rav-n  . For 

the sake of comparison, the same type of oscillator will be analyzed 

A rather thorough discussion of oscillator stability may be found in 

an article by Cutler and Searle   .  Based on their analysis a crystal 

oscillator may have the following characteristics 

P 
Signal-to-noise ratio.,    —— 87 db 

s 

•^ for  1 sec 1.4 x  l(f12 

•y for 10 msec 2 x l(f10 

phase bandwidth,  f.. 100 Hz 

The spectral density of the phase is approximately given by the 

following single-pole characteristic* 

1   2 Pn       <fl>2 

<0 2nfl     Ps    (fx)
2 + (f)2 

* The phase variance  R  for this oscillator (after frequency mulr.i 
plication) is given by the area under <?(f)  or approximately 

P 7 n 9 
N  — - .008 radian . 

s 
This makes the approximation that R-(0) <  1 valid. 
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Figure   3.   SPECTRUM  OF RECEIVED   SIGNAL CASE B -CW  RADAR 



The parameter N is the multiplication factor required to get the 

IF standard to the RF frequency. For the example let the transmi-- 

signal be at X band (10 GHz), therefore 

Let the integration time be 1 second (T = 1) and the range delay 

be 500 |asec. This spectrum of the received signal is plotted in 

is 
Figure 4.  The envelope of the spectrum is shown in dotted lines 

2*/(f)  while the spectrum itself 2<«. (f) (1 - cos 2nfT ) is shown 

in the solid line. 

If the integration time were only 100 milliseconds then the hash 

sidelobe level would be 10 db higher. 

CASE C PULSED RADAR - CRYSTAL OSCILLATOR 

In many radar situations the bandwidth of the phase process is 

not wide relative to the signal bandwidth — .  Therefore, the convcio 

tion in Equation 24 is not easy to interpret. Only in the opposite 

limiting case where Cl < — is the convolution again trivial. 

If the phase spectral density (^.(f))  is very narrow relative 

to the signal spectrum  |ST(f) |  and the variance of the phase is 

2 
small  (R,(0) < 1 radian )  then the loss in resolution and sidelobe 

level is negligible. 

*Note. Figure 4 corresponds to Figure 7 in the Raven papers 
There is a difference only in the magnitude of the curve because 
the crystal oscillator described by Cutler & Searle L."J was used 
in the calculations made in this paper. 
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In general this may not be a valid approximation, therefore 

the more general problem must be solved.  Consider a pulsed radar 

using a crystal standard as its coherent reference which may have 

a 100 Hz noise bandwidth.  If the pulse length is between one and ten 

milliseconds,, then Cl «— . The ratio of the phase process bandwidth 

Cl      .„ 
to the signal bandwidth  — = wT  is a convenient measure to charac- 

w 

terize the phase-signal relationship. CasesA and B correspond re 

fiT > 1 , while the trivial case of C corresponds to QT < 1.  Io 

describe the nature of the distortion for the general case of C (.1 

< flT < 10) the following numerical analysis is required. 

In a pulsed radar, the propagation delay is greater than the 

pulse length  (T, >T).  (For the calculations described below, the 

propagation delay is arbitrarily defined 1, = 5T.) The convolution 

was evaluated for values of T. between 2T and 3T and between 5T and 
d 

6T in increments of ,2T.  In all cases, the variation in the sidelcbe 

level is less than .3 db. Therefore for a pulsed rada. with small 

RMS phase errors, the oscillator phase is essentially uncorrelated 

on transmit and receive. 

A digital computer (SDS-930) was programmed to calculate and 

plot oD(f)'  This function, as mentioned earlier and proven in the R 

Appendix, can be interpreted as the variance of the voltage at the 

output of a filter matched to e o rect (-). This interpretation 

is also valid if the received signal is weighted to reduce its 

sidelobes . 
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The function calculated is 

JR(f) = |S1(f)|
2 + 2^ (f) (1 - cos 2nfTd)^IST(f)|

2   (31) 

To include the effects of sidelobe weighting the ideal signal s (t) 

is multiplied by the function defined by Taylor weighting to achieve 

30 db and 45 db sidelobes (see Klauder)   . 

The spectral density of the phase is assumed to have the follow- 

ing one-pole low-pass characteristic : 

i^f> = -2f*° 
(2nf)2 + (Q)2 

(32) 

To provide a reference, the power spectrum of the undistorted 

signal ( /R =0) is plotted in Fig. 5 for 30 db and 45 db Taylor 

weighting.  In this figure, as in all the figures plotting vQR(f), 

the function is plotted in db (i^e, a log scale) and only the envelope 

of the sidelobes shown.  That is,the peaks of the sidelobes are used 

to give data points and a smooth curve drawn between them.  In almost 

all cases, the detailed sidelobe structure is uninteresting and tends 

to clutter a graph, especially one drawn on a log scale. On each 

graph, three curves are drawn, corresponding to 01 = 0.1, 1.0, and 

10. The figure numbers, the degree of weighting and the RMS phase 

error used are given in the following table. 
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Table of Figures Plotting 

R<f) 

igure # Taylor Weight: Lng RMS  phase,   yR 

6 30 .1   radian   (6   ) 

7 30 .4  radian  (24  ) 

3 45 .1  radian 

9 45 .4  radian 

From these figures, it is apparent that the main lobe width is virtually 

unaffected by the phase distortion.  The signal weighting tends to 

smear the curves so that structure of the curve is not strongly 

affected by fil .  The sidelobe level, however, is a strong function of 

C2T .  To determine the dependence, the power spectral density is evalua- 

ted at an arbitrary value of f , removed from the main lobe region. 

4 5 
(The value chosen was  f = ~^~)   •     The sidelobes vs Cff are plotted 

in Figure 10 for 45 db Taylor weighting and for ~\TR    =   .4 radians.  In 
* o 

addition to the data given in Figure 9, the sidelobe level was evalua- 

ted at fiT = .01, .05, .5, and 5.0 to give a more comprehensive graph. 

Lack of computer storage capacity made calculations for fil = 50, 100, 

500, and 1000 inaccurate and unreliable. 

Figure 10 is particularly enlightening.  Computer calculations 

showed that for  0.1 < QT < 10  the sidelobes grow proportional to 

QT .  For  QT < .01  the sidelobe distortion is negligible.  For 

CT > 50 , Equation 27 predicted the sidelobes would drop off as  l//QT . 

26 



10 

15 

-20 

N" 
c-25 

•30 

35 

40 

45 

50 

eg 
Oi 

rvl 
CM 

^/R^ = 0.1   RADIAN 

Td    =  5 T 

-30.0 db   WEIGHT 

    Cl T   =0.1 

-•- HT   =1.0 

 HT   =10.0 

NOTE:  ENVELOPE  OF 
SIDELOBES (i.«.,PEAKS) 
IS   PLOTTED 

_i L- 

5 

f / w 

10 

Figure   6.   RECEIVED   SIGNAL   POWER   SPECTRUM 



R0   =0.4   RADIAN 

-5 

10 

15 

-20 

4P 

-25 

N 
30 

3S 

•0 

-4 5 

50 

- 30.0   db   WEIGHT 

  £1 T   =  0. I 
— •— £1 T    =    1.0 

MOTE. ENVELOPE 
OF   SIDELOBES (i.e.,PEAK) 
IS    PLOTTED 

(VI 

5 

f / w 
10 

Figure   7    RECEIVED   SIGNAL   POWER   SPECTRUM 



0    v 

-5 

-I 0 

15   - 

T3 

- 20 

a-2 5 

-30 

-35 

•40 

45 

50 

m 
(M 
<f> 

IM 
<M 
I 
< 

Ro   =0.1     RADIAN 

Td    = 5T 

-45 db   WEIGHT 

— £1 T    = 0.1 

NOTE: ENVELOPE OF 
SIDELOBES(i.e.,PEAK) 
IS PLOTTED 

f/W 
5 

f / W 

Figure   8.  RECEIVED   SIGNAL  POWER   SPECTRUM 



- 10 

-15 
.a 
-o 

 20 

K 
V^-25 

-30 

-35 

-40 

-45 

- 50 

R0  = 0.4   RADIAN 

Td   =  5 T 

— 45 db   WEIGHT 

 SlT  - 0.1 

 • £ll  -   1.0 

 &T = 10.0 

NOTE:ENVELOPE   OF 
SIDELOBE (i.e., PEAKS) 
IS    PLOTTED 

E 

-i i- J i_ 

5 

f / w 

10 

Figure   9.   RECEIVED   SIGNAL   POWER   SPECTRUM 



 y . 
/ 

• / 
o 
z / 

K CO / 
X z 

/ CD < 
/ UJ Q 

$ < 
cr / 

/ 

cr 
o <*• / 

< 
o 
ii 

o 
II 

r 
/ 

/ 

< 
ON 
jl  ^  CM 

x> cr T3 / UJ   3      . 
•o 

> 
/ a: co o 

O  UJ   UJ 
in / UJ  a; 
* / X 

cr / 
o / — 
u. 

Ul 

- 

cc 
UJ 
3 z 

O  Q 
m p w _ 

A < t 
C| 

t*5 

l3i >- IE 
Ct r UJ CO 

£ 5 « < 
E 3  _J 

0-  3 
to U y   2  CO 
z 
o 

UJ 
en -~ ' £ 

< 
jj 
r 

_l UJ          ( D 
3 QQ     "  1 _> o •»- \ 
-1 
< "<   1 j. 

o m~ « D 

tt CO   _,   , u A 
UJ 40 <r o 5 • M \ 
3 
Q. UJ 

O \ 

s t K . 1 
o 2 z >- 

UJ   ° 
z ±   < D \ 

H 
o 
z 

 U .    i                                      1       k 

o 
o 
o 

CO 
> 

LO 
V- 

o 
6 

> 

UJ 
> 
LU 

UJ 
GO 
O 

Q 

CO 

<L) 

3 

-   o 

o 

8 
KS 

o 
I 

o o 

i 

O 

I 

(qp)   13A31   390-I3QIS 



* 
This curve is drawn in Figure 10 as a dashed line.  The curve 

therefore consists of three almost straight line segments with slopes: 

0, AT , and  1//QT .  It is important to realize that the two break- 

points completely specify the sidelobe level and that these are a 

function of both the RMS phase error  (/R~)  and the degree of 

weighting.  A complete specification of the dependence of the sidelobe 

level on C2T  requires a four-dimensional plot.  Instead of attempting 

to do this, it is hoped that the data given sufficiently illuminates 

the problem and that the equations derived allow one to calculate 

special cases should they arise. 

Use of -45 db Taylor weighting will degrade the sidelobe level or 
signal-to-noise ratio by 2.68 db.  The theoretical portion of 
Figure 10 is drawn without the effects of weighting included. 
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SECTION V 

SUMMARY 

The loss in resolution in terms of the increase in mainlobe width 

and the increase in sidelobe level is computed for radar signals 

corrupted by a stationary random phase process.  Ey assuming that the 

RMS phase error is small., a relatively simple and easily interpretable 

analysis is possible. 

A serious analytical difficulty arises in attempting to define 

a function from which the main lobe width and sidelobes could be cal- 

culated. The difficulty comes about because the statistics of the 

signal are not stationary;   because of the pulsed nature of the 

signal, the signal statistics are time varying. 

Two approaches are taken to solve the problem and both give the 

same solution for most, signals of interest. The first approach treats 

the Fourier transform of the corrupted signal as a random process 

because it is a linear function of a random process.  The variance of 

this random process is interpreted as the variance of the voltage 

which would appear at the output of a very narrow filter if the 

corrupted signal were applied at its input. This approach is analyti- 

cally the same as interpreting the beamwidth and sidelobe level of ar 

antenna by calculating the expected power vs. angle. 

The second approach given in the Appendix is more rigorous and 

is supported by detailed calculations. The corrupted signal is 
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applied to a filter matched to the uncorrupted signal but. offset in 

frequency. The variance of the peak voltage at trie output as a 

function of the offset frequency is calculated.  Thus, the main lobe 

width and sidelobe level are calculated in a manner identical to 

actual practice.  If the signal  is a rectangular pulse, with or 

without sidelobe weighting, the result is the same as the first 

approach.  If the signal is a general time limited signal, a more 

complicated expression for the matched filter output is derived. 

In each approach, the required calculation requires convolving 

the phase spectral density with the power spectrum of the signal. 

The convolution is trivial in certain limiting cases where the band- 

width of the phase is much greater or much less than the bandwidth 

of the signal.  A microwave oscillator has a very broad phase spectrum. 

Therefore, it tends to introduce error sidelobes while not affecting 

the main lobe width.  A crystal oscillator, on the other hand, may 

have a very narrow phase spectrum, therefore the convolution must be 

evaluated.  Numerical calculations revealed that again the main lobe 

width was not degraded but that hash sidelobes were introduced  The 

magnitude of the distortion sidelobes is very small for QT < .01  and 

is approximately a linear function of /HT in the region  .1 < QL  < 10 

The function then reaches a maximum and decreases inversely with 

/fjT for fiT > 100 .  The sidelobes are also a linear function of the 

RMS phase error  (/IF")  for small values of that error. 
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The effect of a finite propagation is also considered.  By using 

a coherent L.O. to mix down the received signal, most of the phase 

drift is cancelled if the propagation delay is short enough. Quanti- 

tatively, the delay introduces a (1 - cos 2rrfT.) modulation on the 

phase spectrum.  In the case of a CW radar, the modulation gives a s,:ru'.- 

fcure to  the error sidelobes, while for a microwave oscillator (pulsed 

radar) the cosine modulation term averages out.  In the more general 

case, the propagation delay must be included in the calculations. 

For I > 5T, , a common pulsed radar situation, the calculations 
d 

indicate that the correlation between the transmit and receive phase 

errors may be ignored.  In those cases where the phase process has a very 

narrow bandwidth and the transmit and receive phases are correlated, 

the product ffi  is so small that the distortion is negligible. 
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APPENDIX 

CALCULATION OF SPECTRA OF PULSED RANDOM PROCESS 

The analysis presented in this appendix gives a more mathematical 

derivation of Equation 16 of the text which is an expression for the 

spectrum of a sinusoidal pulsed signal corrupted by a zero-mean 

stationary random phase.  The approach of this analysis was first 

reported by Kramer in a private communication. 

Assume an ideal uncorrupted signal  s (t)  of the form (see 

Figure 1 for graphical signal relationships) 

/Y     j2rrf t    . 
f e    ° rect [£] (33) 

The ideal signal is corrupted by a multiplicative distortion x(t) , 

where 

x(t) = e ^(t) (34) 

and  0(t)  is a stationary random process.  The resultant corrupted 

signal is identified as a transmitted radar signal  s (t)  and is 

sT(t) = S].(t) x(t) (35) 

If S_(f)  is the frequency function of  s (t)  and \J  (f)  the 

power spectral density of x(t)  then a suitably defined power spectral 
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density of s (t) will be shown to be 

^(f) = |sI(f)|
2(^((f) (36) 

If the variance of 0(t)  is small, i.e., 

R (0) = U(t) I  « 1 radian 
0       •     ' 

then the suitably defined spectral density of  s (t)  is  (Equation 16 

of the text) 

^(f) « Cu0(f) +^(f)]® |Sx(f)|
2 (37) 

The power spectral density of  s (t)  is not rigorously defined 

because  (1) the signal is not a stationary random process, and 

(2) the power in a narrow band  Af approaches zero as  Af  approaches 

zero, (unlike the power spectral density of a stationary process). 

This difficulty is overcome by two different analyses which reach 

the same conclusion.  The signal  s (t)  is passed through a filter 

with impulse response h(T) .  If the filter is assumed to be very 

narrow in frequency at  f  the variance of its output can be inter- 

preted as a measure of the spectral content of its input.  On the 

other hand, if the filter is matched to the uncorrupted signal, except 

for a frequency offset  f , 
d 

j2TTfdT 
h(T) • Sj(T - T) e (38) 
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then the variance of its output ^f {i  )     at t = 0 is a function of 

the frequency offset of the filter  (f.) •  This function is also 

interpreted as the spectral content of S (f) •  Because matched 

filtering is used in practice,the system resolution and sidelobe 

capability is directly measured by *4   (f,) .  The following detailed 

analysis supports these assertions.  In addition, the equations are 

derived for the matched filter output for the case where  s (t)  is 

any time-limited signal. 

The output of the filter  y(t)  is defined by the following 

convolution 

CO 

y(t) = J  h(t - T) ST(T) dT (39) 

The mean square voltage at the output is given by 

E |y(t)|' = y(t) y(t) 

00   oo * 
T) h(t a) ST(T) s (a) X(T) x(a) dT da 

(40) 

The transforms of the filter and correlation function are defined 

as follows : 

h(t - T) = 
+j2nv1(t-T) 

H(vx) e d\>l 

h(t - a) = H<-v2) e 
+j2rrv2(t-a) 

dv-. (41) 
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SjCr) = 
+J2nv3(T) 

SI(v3) e dv3 

*    P *     +j2nv4a 
s][(a) = S^-v^)  e       dv4 

:(T) x(a) = RX(T - a) = j ^(v5) 
+j2nv5(t-a) 

e dvq 

Substituting these definitions for the transforms into Equation 40 

gives the following sevenfold integral. 

y(t) y(t) - J dT [ da J dV]_ J dv£ [ dv3 J dv4 [ dv5 H^) H*-v2) • 

Sl(v3) S*(-v4>4<V 
+j2TTv1(t-T)  +j2nv2(t-a) 

+J2nv3T      +j2nv4a     +j2rrv5 (t -a) 
e e e (42) 

Changing the order of the integration, the integrals over  T  and a 

become 

i 

J 
-j2n(v1-v3-v5)T     «>  -j2rr(+v2-v4+v5)a 

e dT "    e da      (43) 

= M0(vrv3-v5) U0(v2-v4+v5) (44) 

The integration over  v,  and v,     are then trivial and yie Id 
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y(t) y*t) = JJJ" dvx dv2 dv5 H(Vl) H*-v2)  SI(v1-v5) sj(-v5-v2)ix(v5) 

j2nv,t        j2TTV2t 
e e (45) 

Now let  the  filter characteristic be very narrow,  centered  on     f      and 
d 

with very large gain* 

H(vx) - Wo(v1 - 2nfd) 

(46) 

H(-v2) = Uo(-V2 - 2nfd) 

The mean square voltage per cycle at  f  is independent of time, 

is only a function of  f,, and is interpreted as the spectral density 

of  s(t) ,[^(fd)J • 

*/(fd) - y(t) y(t) = J Sj (fd - v5) S* (fd - v5)></(v5) dv5  (47) 

^(fd) = |SI(f)|
2®^/(f) (48) 

If the phase is small the corrupting signal is 

x(t) = e j0(t) * 1 + j0(t) - *&£- (49) 

41 



The correlation function can be approximated by 

R (T) = x(t) x*(t-T) « 1 + R (T) (50) x 0 

The   spectral  density  is,   therefore,   given by 

</x(f> *^o(f>  +^(f) (r> 1) 

Substitution into Equation 13 gives the desired result 

^(fd) • L(f) +^<f)j © |Sx(f) |2 (52) 

Rather than interpreting <7 (f )  as the transmit power spectral 

density, as was just proven, it is sometimes possible to interpret 

«</l(f,)  as the variance of the voltage at the peak output of a filter 
T  d 

matched to the transmit signal offset by  (f ) .  This interpretation 

is possible when the transmit signal has a rectangular envelope 

[rect —I and holds whether the receive signal is weighted or un- 

weighted.  For a general time-limited signal, a more complicated 

expression defines the variance of the voltage at the matched filter 

output.  These assertions are now proven. 

The variance of the voltage output of an arbitrary filter is 

given by Equation 45 : 
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y(t) y(t) 
* * (} j2n(v+v )c 

HCv^  H(-v2)   SI(v1   -  V5)   S^-^   -   v5)J(v5)   e 

dv    dv2  dv5 (53) 

Assume   that  the  received   signal   is unweighted and  has   the   form 

sT(t)  =7-    e 
r   J^V rect It) k:><v 

Its transform is (assuming  f = 0  for analytical convenience) 

s (f) . sinjTfT 
bV    } TTfT (55) 

Let the arbitrary filter,  H(f)  be matched to  sT(t)  but offset: 

by t, 

H(f) = S^f - fd) (56) 

Equation  53,   evaluated at  the peak of  the matched   filter  output     (t =  0) 

becomes 

y(0)   y(0)   = + 
sin n(v1-fd) T    sin n(v,-v5)T 

dVi(V J      TT(Vl-fd)T n(vrv5)r- dvl 

I 
sin n(vi-f ,)T  sin TT(vi-vr)T 

dv' n(v2'fd)T n(v^-v5)T v2 
(57) 
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where   v^ " -V- 

Because of the following general relationship, this equation can be 

reduced: 

J 
sin (x-x ) sin x 

(x-x )    x 
o 

o  sin x o 
- dx • (58) 

|y(t)|2 - Jv/(v5) 
sin rr(fd-v5)T 

"<VV5)T 
dvc 

= J^(v5) |SI(Auu-v5) (2 dv5 (59) 

Equation 59 is the definition of a convolution and is interpreted as 

the variance of the output voltage of a filter matched to s (t) 

and offset by  f  . 

./(f.) -y<f)® isT(f)i
: 

-(60) 

For weighted signals the analysis is modified slightly.  Let 

the received weighted signal and its transform be 

s  (t) 
wT 

sT(t) w(t) 

SwT(f> -I 
1=-°° 

w. ST(f (61) 
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For practical applications, the above sum includes only a few terms 

[for example, 1 + cos -r—  has coefficients w  = w  = —  , 

w • 1 , all other weights are zero]. 
o 

The filter, however, is still matched to the unweighted signal. 

The equation for the variance of the peak matched-filter output is 

y(0)  y(0) = + J dv5^(v5) t 

sin n(v,-f,)T sin TT(V,-V--•)T 
I w 1     d 1   y5  T 

dv. 1       "<Vfd>T        n(vrv54>T 

sin TT(v2_fd)T sin nCv^-v^^T 
Z "j   TT(v'-fjT ~ ITT"  dV2 v2   M' rr(v^-v5-j)T 

(62) 

This reduces to the same equation as before; 

(y(0))2=Jdv5/(v5) E w. 
sin "(^"^"x^1- 

n(fd-v5-i)T 
(63) 

a x(v5)|Sl(fd-v5)r (64) 

The general case follows the same pattern.  For any time-limited 

signal it is possible to write the transmit signal in the form 

sT(f) •lh 
sin n(f - ^)T 

n(f - £)T 
(63) 
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The filter H(f)  is matched to this signal, therefore, 

1 
^ sin n(f - Af - £ ) T 

i 
T 

H(f) = Sl(f - f.) = Y X*      -r-±- (66) 
T     d   ^ x  n(f - Af - ±> T 

The  expression  for  the  output variance   is   found  by the  same  procedure, 

and  gives 

sin TT (f     - ^ -  vc)T 

|y(0)|    -      dv/x(v5)))Ui  HT  (67) 

This can be expressed as 

-/T(fd)  = jf(0® |u(f)|2 (68) 

where 

Deo -£ ^ u* 
r  sin n(£  - ^T 

TT(f   -   —^1 

Equation 68 expresses the general result of the Appendix. Using 

numerical analysis techniques, it is possible to easily determine the 

loss in resolution and sidelobe level for any time limited signal. 

If numerical techniques are used, it would also be possible to 

calculate the power density of x(t) , namely ^f  (f), without 

assuming a small phase variance.  Therefore, it is possible to 

calculate in a straightforward manner the system degradation due to 
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random phase errors for the general problem without making narrowing 

assumptions even though the final equation appears complicated. 
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